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Asymptotic sequences

We can now prove Theorem H3.

Part (i): follows immediately from Theorem M3.

For example, suppose x1, . . . , xr is an asymptotic sequence.

If they do not remain an asymptotic sequence in R̂ , then for some j ≤ r , there
exists Q ∈ A∗((x1, . . . , xj−1)R̂) with xj ∈ Q.

By Theorem M3, P = Q ∩ R belongs to A∗((x1, . . . , xj−1)R).

Since xj ∈ P , this is a contradiction. The converse is similar.
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Asymptotic sequences

Part (ii): The proof is similar to part (i), only one uses Corollary O3.

Suppose x1, . . . , xr is an asymptotic sequence. Let q ⊆ R be a minimal prime,
and maintain the notation from Corollary O3.

If the xi do not remain an asymptotic sequence in Rq, then for some j ≤ r ,
there exists Qq ∈ A∗((x1, . . . , xj−1)Rq) with the image of xj in Rq belonging to
Qq.

Here Q ⊆ R is a prime in R containing q.

By Corollary O2, Q belongs to A∗((x1, . . . , xj−1)R).

Since xj ∈ Q, this is a contradiction. The converse is similar.
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Asymptotic sequences

Part (iii): By parts (i) and (ii), the given xi form an asymptotic sequence if and
only if their images in R̂z form an asymptotic sequence, for all minimal primes
z ⊆ R̂ .

Thus, we must prove that if R is a complete local domain, then x1, . . . , xr form
an asymptotic sequence if and only if height(x1, . . . , xr )R = r , for all i .

For this, suppose x1, . . . , xr is an asymptotic sequence.

Since each xi is chosen to avoid the primes in A∗((xi , . . . , xi−1)R), each xi
avoids the primes minimal over (x1, . . . , xi−1)R .

Therefore the ideals (x1, . . . , xi)R all have height i .

Conversely, suppose x1, . . . , xr generate an ideal having height r . The ideal
generated by each x1, . . . xt has height t, for all 1 ≤ t < r (since R is catenary).

If x1, . . . , xr do not form an asymptotic sequence, xj ∈ P , for some
P ∈ A∗((x1, . . . , xj−1)R), for some j.

By Proposition O3, height(P) ≤ j − 1.
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Asymptotic sequences

On the other hand, (x1, . . . , xj−1)R ⊆ P , so height(P) ≥ j − 1, and therefore
height(P) = j − 1.

Since xj ∈ P , this contradicts the assumption on the xi .

Thus, x1, . . . , xr form an asymptotic sequence.

Part (iv): Follows immediately from part (iii).

Part (v): We use the obvious terminology:

We say that x1, . . . , xs form a maximal asymptotic sequence if they form an
asymptotic sequence and there does not exist y ∈ R such that x1, . . . , xs , y is
an asymptotic sequence.

The second condition is equivalent to requiring m ∈ A∗((x1, . . . , xs)R).
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Asymptotic sequences

Set δ(R) to be the minimum of dim(R̂/z), taken over all minimal primes
z ⊆ R̂ .

By part (iii), the length of any asymptotic sequence is less than or equal to
δ(R), including the length of a maximal asymptotic sequence.

Now suppose x1, . . . , xs is a maximal asymptotic sequence.

Then m ∈ A∗((x1, . . . , xs)R). By parts (i) and (ii) above, there exists a
minimal prime z ⊆ R̂ with mR̂z ∈ A∗((x1, . . . , xs)R̂z).

By Proposition O3, height(mR̂z) = dim(Rz) ≤ s.

Thus, δ(R) ≤ s, which shows that all maximal asymptotic sequences in R have
length δ(R).
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Quasi-unmixed local rings
We can now state and prove the characterization of quasi-unmixed local rings.

Theorem P3. Let (R ,m) be a local ring. The following statements are
equivalent.
(i) R is quasi-unmixed.
(ii) Every system of parameters forms an asymptotic sequence.
(iii) Some system of parameters forms an asymptotic sequence.
Proof. We let δ(R) have the same meaning as above. Set d := dim(R). If R
is quasi-unmixed, then δ(R) = d.

Let x1, . . . , xd be a sop and let I denote the ideal they generate. Then I is
m-primary. It follows that the image of I in each R̂z is mR̂z -primary for all
minimal primes z ⊆ R̂ .

Each R̂z has dimension d, therefore the images of x1, . . . , xd in each R̂z form a
sop and thus generate an ideal of height d.

By Theorem H3, x1, . . . , xd is an asymptotic sequence. So, (i) implies (ii).
Clearly (ii) implies (iii). If some sop forms an asymptotic sequence, this is
clearly a maximal asymptotic sequence. The length of such equals δ(R) by
Theorem H3. Thus δ(R) = dim(R), and R is quasi-unmixed.
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Quasi-unmixed local rings

As a corollary, we can prove one component of Ratliff’s Theorem.

Corollary Q3. Let (R ,m) be a local domain. If R
satisfies the dimension formula, then R is quasi-unmixed.

Proof. By the previous theorem it suffices to show that R has a sop forming an
asymptotic sequence. Suppose x1, . . . , xr is a maximal asymptotic sequence.

Then, m ∈ A∗(x1, . . . , xr )R .

On the other hand, by Proposition O3, height(m) ≤ r . Since r ≤ height(m),
we must have r = height(m) = dim(R). T his implies that x1, . . . , xr is a sop,
and thus R is quasi-unmixed.

We now want to work directly towards the other parts of Ratliff’s theorem.

We start with two observations.
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Quasi-unmixed local rings

Observation 1. For Noetherian domains A ⊆ B such that B is a finitely
generated A-algebra, if A satisfies the dimension formula, then B
satisfies the dimension formula.

To see this: Let C be a finitely generated B algebra. Then C is also a finitely
generated A algebra. Let Q ⊆ C be a prime ideal and set P := Q ∩ B and
P0 := Q ∩ A. Then since A satisfies the dimension formula:

height(Q) + tr.degk(P0)
k(Q) = height(P0) + tr.degAC ,

and
height(P) + tr.degk(P0)

k(P) = height(P0) + tr.degAB.

Solving each equation for height(P0 and setting them equal to each other gives:

height(Q)+tr.degk(P0)
k(Q)−tr.degAC = height(P)+tr.degk(P0)

k(P)−tr.degAB.

Rewriting, we get:

height(Q)+tr.degk(P0)
k(Q)−tr.degk(P0)

k(P) = height(P)+tr.degAC−tr.degAB.

Additivity of transcendence degree gives:

height(Q) + tr.degk(P)k(Q) = height(P) + tr.degBC ,

which is what we want.
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Quasi-unmixed local rings

Observation 2. A Noetherian ring S is catenary if and only if for every pair of
prime ideals P ⊆ Q, height(Q) = height(P) + height(Q/P).

To see this: suppose the height condition holds. Let P ⊆ Q be prime ideals.
To see that all saturated chains of primes between P and Q have the same
length, we may mod out P and localize at Q.

Note that these operations preserve the height condition. Thus, we have to
show that if the height condition holds, all maximal chains of primes in a local
domain (R ,m) have the same length,namely, dim(R).

Let (0) ( Q1 ( · · · ( Qs = m be a maximal chain of length s. Clearly
height(Q1) = 1.

By the height condition
height(Q2) = height(Q2/Q1) + height(Q1) = 1+ 1 = 2, since, by assumption,
there are no primes between Q1 and Q2.

Continuing in this fashion, we see height(Qi) = i , for all i .

Thus, s = height(Qs) = height(m) = dim(R), which is what we want.

The converse is clear.
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Quasi-unmixed local rings

We can now state and prove a second implication in Ratliff’s Theorem.

Proposition R3. Let R be a universally catenary Noetherian domain. Then R
satisfies the dimension formula.

Proof. We just have to prove: If T is a Noetherian domain, and T = R [x ], for
some x ∈ T , then the dimension formula holds between R and T . If x is
algebraically independent over R , then we have verified the dimension formula
in this case in Remark (iii) following the definition of the dimension formula.

Suppose x is algebraic over R . Let A denote the polynomial ring in one variable
over R set K to be the kernel of the natural homomorphism from A to T .

Since tr.degRT = 0, we must show

height(Q) + tr.degk(P)k(Q) = height(P).

Let Q0 denote the preimage of Q in A, so that Q = Q0/K .

Since A is catenary,

height(Q0) = height(Q0/K) + height(K) = height(Q) + 1. (∗)
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Quasi-unmixed local rings

Since the dimension formula holds between A and R we have

height(Q0) + tr.degk(P)k(Q0) = height(P) + tr.degRA = height(P) + 1.

Using (*) in this last equation we have

height(Q) + 1+ tr.degk(P)k(Q0) = height(P) + 1. (∗∗)

But A/Q0 = T/Q, so tr.degk(P)k(Q0) = tr.degk(P)k(Q).

Substituting this into (**) and cancelling 1 yields

height(Q) + tr.degk(P)k(Q) = height(P),

which is what we want.
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Cohen-Macaulay implies catenary

Here is a result of independent interest that plays a key role in our analysis.

Proposition S3. Let S be a a Cohen-Macaulay ring. Then S is catenary.

Proof. We just have to check the height condition in the observation above.
Let P ⊆ Q be primes. We may assume that S is local at Q.

Suppose P has height h and set d =: dim(S). Take x = x1, . . . , xh a maximal
regular sequence from P .
Then

dim(S)− height(P) = d − h = depth(S/(x)) ≤ dim(R/P),

the latter inequality holds since P is an associated prime of S/(x).

On the other hand,

dim(R/P) + height(P) ≤ dim(S)

always holds in a local ring,and thus,

dim(S) = height(P) + dim(S/P), which is what we want.
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Quasi-unmixed local rings

Proposition T3. Let (R ,m) be a complete local domain. Then R is universally
catenary and satisfies the dimension formula.

Proof. We use the fact that a homomorphic image of a catenary ring is
catenary. To see that R is universally catenary, it suffices to show that a
polynomial ring in finitely many variables over R is catenary.

By Cohen’s Structure Theorem, R is the homomorphic image of a regular local
ring S. Hence any polynomial ring B over R is a homomorphic image of a
polynomial ring A over S.

Since S is Cohen-Macaulay, A is Cohen-Macaulay, and therefore catenary.

Thus, B is catenary, which shows R is universally catenary.

The second statement is now immediate from Proposition R3,

Remark. Since the catenary property does not require the ring in question to
be an integral domain, the proof above shows that a complete local ring is
catenary.
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